
BBBBiiiiDDDDiiiirrrreeeeccccttttiiiioooonnnnaaaallll MMMMLLLLPPPP NNNNeeeeuuuurrrraaaallll NNNNeeeettttwwwwoooorrrrkkkkssss

A.F. Nejad and T.D. Gedeon

School of Computer Science and Engineering
The University of New South Wales

Sydney 2052 AUSTRALIA

AAAABBBBSSSSTTTTRRRRAAAACCCCTTTT

A new method of training neural networks is suggested that enables them to remember input
patterns as well as output vectors, given either of them. This work could be a step ahead toward
simulating the behaviour of networks closer to that of human associative memory. We shall indicate
some applications of this approach in extracting meaning from neural networks and finding the
centres of clusters.

In this paper we have applied a Bidirectional Neural Network(BDNN) to predict and
analyse students final marks by using partial grades of students in a large subject (these partial
marks give 40% of the overall grade). At the conclusion of this paper we have also included a
discussion on the advantages and disadvantages of BDNNs and some of the important roles they
may play in future work.

IIII.... IIIINNNNTTTTRRRROOOODDDDUUUUCCCCTTTTIIIIOOOONNNN

 Since Ramón y Cajal described the contact between neurons there was a debate over the
mechanisms of synaptic function until the 1950s, when physiologists found that synaptic
transmission can be either electrical or chemical and where it is electrical the transmission is usually
bidirectional (Kandel, Siegelbaum and Schwartz, 1991). We shall demonstrate the simulation of this
kind of bidirectional transmission using neural networks and address some applications in real
world problems.

Neural networks can be applied to many real world systems to perform classification,
pattern recognition or prediction on the basis of input data. However, given the output data, standard
neural network models are not able to produce any plausible input data, which is done easily by
humans, unless another network is trained. For example, people can retrieve an image of an elephant
from the word “elephant”, and when we see an elephant our mind will find the corresponding
word. Networks which can produce plausible input values for a given output value could be used in
many applications.

The extraction of rules from trained neural networks is seen as a way to improve the
accessibility of neural networks (Yoda, Baba and Enbutsu, 1991, Hora, Enbutsu, and Baba, 1991,
Towell and Shavlik, 1991, Bochereau and Bourgine, 1990, Gallant, 1988). There is an analogy with
the traditional bottleneck of knowledge acquisition in expert systems.

Most methods of rule extraction use causal connections between inputs and outputs. There
is some statistical indication that outputs have causal effects on inputs. Thus, if we were to explicitly
allow connections to be made between the output and input values, more accurate rules could be
extracted.

In the following sections we shall describe the training of such neural networks as a content
addressable memory.

IIIIIIII.... TTTTrrrraaaaiiiinnnniiiinnnngggg BBBBDDDDNNNNNNNNssss aaaassss ccccoooonnnntttteeeennnntttt aaaaddddddddrrrreeeessssssssaaaabbbblllleeee mmmmeeeemmmmoooorrrryyyy

To use BDNNs as content addressable memories, it has been assumed that a complete set
of training data with a one-to-one relation between input and output vectors is available, otherwise
we should use some preparation techniques as described in following sections to create a one-to-
one relationship between them, unless the problem is inherently not appropriate for such
transformations of the vector spaces. We have used MLP networks with either one or two hidden
layers for this task.

IIIIIIII....iiii.... MMMMeeeetttthhhhoooodddd ooooffff TTTTrrrraaaaiiiinnnniiiinnnngggg

We have applied the error back-propagation technique (Rumelhart, Hinton and Williams,
1986) in both reverse and forward directions to adjust the weight matrix of the network. In our
experiments we did not need to use more hidden units or more hidden layer weights in training a
bidirectional network in comparison to the case of training a network in the traditional way.

The network will be trained bidirectionally with the same weights in each direction. For each
input and output node a threshold is assigned, but assigning extra threshold units to hidden layer
units is not necessary. That is, the same threshold weights are used in both directions. Due to a
flatter search space, usually a higher number of epochs will be necessary for the network to
converge in comparison to those of traditional single direction back-propagation networks.

When quantities are related to each other in a specific numerical way, we use the concept of
a function to unify them. By the definition of a function, we mean that each element in domain A is
mapped into precisely one element in range B. Therefore we can define f’ (reverse of function f) if
and only if f is a one-to-one function.

The remaining challenges to be solved are the cases where the function relating inputs to
outputs is not reversible, or there is a relation which is many-to-one between inputs and outputs.

It should be noted that it is not suggested to use BDNNs for classes of problems which are
inherently irreversible. For example, all the people who are authorised by a loan authorisation
network are in one class. Since the result is a ‘yes’ or a ‘no’, we can not expect to map ‘yes’ to
only a single input pattern.

In many cases, neural networks are used to map many input patterns to one output pattern

(eg. XOR, Loan). We have used two techniques to avoid this problem. The first method is to use
some statistical techniques to create a one-to-one relationship between input and output vectors if it
is meaningful in the domain, allowing our two-directional training to proceed. Using statistical
techniques in data preparation to increase the reliability of neural networks has been suggested by
many researchers, thus our approach is appropriate. The second technique adds an extra output
node for cases where the decision made by the neural network is essentially symbolic. There is
some analogy with the use of mnemonics to add context to remember phone numbers, for example.

IIIIIIII....iiiiiiii.... EEEExxxxppppeeeerrrriiiimmmmeeeennnnttttaaaallll rrrreeeessssuuuullllttttssss

We implemented BDNNs for a few cases including XOR, character (digit) recognition, and
student final mark prediction.

In the case of character recognition, our training patterns had a one to one mapping between
input and output patterns, thus no modifications were required.

Figure 1.

Figure 1 shows an example of a training pattern. The network was a 28 input, 7 hidden
units, and 10 output units. The network was trained as a BDNN, and performed at 100% accuracy
in both directions on the training set. Note that for a content addressable memory, the use of a test
set is neither possible, nor desirable, as we do not want generalisation, but retrieval.

In the case of the XOR and student final mark prediction, the function is not reversible.

For the XOR problem where a zero output is related to four input patterns we used one
extra node in the output in order to make the function reversible.

 Inputs Output Extra Node

0 0 0 ==> 0 0.1
0 1 1 ==> 0 0.3
1 0 1 ==> 0 0.5
1 1 0 ==> 0 0.7
0 0 1 ==> 1 0.2
0 1 0 ==> 1 0.4
1 0 0 ==> 1 0.6
1 1 1 ==> 1 0.8

Table 1. XOR problem and using Output Extra Node

In this way each output pattern will be related to only one input pattern. This is analogous to
the assignment of some otherwise meaningless mnemonics to a telephone number to improve our
ability to recall it. The trained network classified correctly all the training patterns in the XOR
problem.

For student final mark prediction case, we did not use an extra node, but we did some
statistical manipulations on the input patterns (see figure 2) as data preparation.

p01275312 1 0.5 1 0.8 0.7 0.7 0.7 1 0.8 0.4 1 0.3 0.49 0.5

 1 2 3 4 5 6 7 8 9 10 11 12 13 14

regno crs S ES Tut L2 TS L4 H1 H2 L7 P1 F1 Mid L10 Fin

0275105 3400 1 F T9-ko 3 4 2.5 17 17 3 5 14 10 2.5 56
0273169 3972 1 FS T1-yh 2 3 3 20 19 3 16 14 33 2.5 80

Student Inputs

Figure 2. Two example of students records and an example of a scaled record

For each class of final marks (Fail, Pass, Credit, Distinction) we found the mean of input
values. We also calculated for each class of Pass and Credit six sub-classes and for each class of
Fail and Distinction three sub-classes and their related input patterns. Assuming the monotonic
behaviour of input nodes, we used some simple equations like (80% * Xi + 20% * Xj) to find the
related value of inputs for each sub-class. For example, the six sub-classes of Credit are:

“90%CR-10%PS”, “90%CR-10%DN”,
“80%CR-20%DN”, “80%CR-20%PS”,
“70%CR-30%PS”, and “70%CR-30%DN”.

This was possible because of our pre-assumption of the monotonic behaviour of inputs. We
could also use some more sophisticated methods like Z scores to identify the expected value of
inputs, or sensitivity analysis to exploit the behaviour of inputs. Alternatively we could use other
clustering methods to identify the expected value of inputs, such as Kohonen networks, the best
way is using BDNN itself to pre-classify the input patterns. This work is discussed elsewhere, and
consists of training BDNNs to find cluster centres. The related input patterns for each of the sub-
classes are those that have outputs in a sub-class.

Done properly this kind of splitting of input patterns into sub-classes will not degrade the
learning of the network, but will increase the reliability of the resulting network as well as allow
faster convergence. In many cases, such as the character recognition problem, there is no need to do
this kind of statistical manipulations to prepare input patterns. As an example, suppose the case that
we had the exact final mark of students which allowed us to define some intervals on the range of
final marks, then we could easily associate the appropriate expected value to each of the input
patterns of a class.

In training the student mark prediction BDNN, we used the same static momentum and
learning rate in both directions. We intend to investigate whether the use of dynamic coefficients
will result in faster convergence of the network. In BDNNs we have used the same thresholds in the
hidden layer units in both directions. It is probable that using different thresholds could improve
learning time, but would be a cost of partially decoupling the forward and reverse directions. We
have yet to investigate whether this partial decoupling reduces BDNNs usefulness.

For the first fifty epochs the BDNN is trained normally in the forward direction. Then, the
direction of training of the network is reversed. This direction of training is maintained until the
overall normalised error of the output nodes (in the current direction) is less than or equal to the
normalised error of the previous direction of training, or some maximum number of epochs have
been spent in the current direction, or the overall error in the current direction is less than the error
tolerance we have predefined for that direction. This sequence of reversals of direction of training
continues until the error is below the error tolerance set for both directions.

The trained network could correctly classify 74% of the training patterns in the case of the
student mark prediction problem. A number improvements are possible, such as removing the
outliers, softening the sharp edges between the subclasses, and doing some preparation techniques
on the training data such as using binary nodes (dummy variables) instead of continuous numbers
for coding some fields like tutor-group and session number fields, or using the expected value of
the lost fields instead of initialising them simply to zero. Finally, the assumption of monotonic
increasing of values of some fields does not hold. Thus, the 74% performance is quite good. Note
that we have retained the current encodings to maintain comparability with previous work using the
same data set (Gedeon and Bowden, 1992, Slade and Gedeon, 1993). A future phase of this work
will be to compare the extraction of rules from a BDNN with our previous rule extraction using this
data set (Gedeon and Turner, 1993, Turner and Gedeon, 1993).

IIIIIIIIIIII.... DDDDIIIISSSSCCCCUUUUSSSSSSSSIIIIOOOONNNN

We believe that the trained bidirectional neural networks will help us in solving the
traditional bottle-neck of the acceptance and use of neural networks. This is the need to understand
the contents of the black box, hence extracting rules from the trained network

Our method can also be used to enhance other techniques. For example using sensitivity
analysis with a BDNN it will now be possible to measure the sensitivity of input values to output
values as well as that of output values to input values.

Our method of bidirectional training of neural networks by learning both the forward and
reverse tasks at one time will yield more powerful learning. The bidirectional learning aggregate
gradient tends to be flatter, however we believe this may result in networks less susceptible to noise
and providing better generalisation.

It is important to note that applications of bidirectional neural networks in control systems
where the effect of a change in outputs should result in an appropriate change in input values
should be considered as another important advantages of BDNNs.

RRRREEEEFFFFEEEERRRREEEENNNNCCCCEEEESSSS

Kandel, ER, Siegelbaum, SA and Schwartz, JH “Synaptic Transmission”, Principles of Neural
Sciences, 1991.

Edelman, GM, Gall, WE and Cowan, WM (eds.), Synaptic Function, New York: Wiley, 1987.
Yoda, M, Baba, K and Enbutsu, I “Explicit representation of knowledge aquired from plant

historical data using neural networks,” International Joint Conference on Neural
Networks, San Diego, vol. 3, pp. 155-160, 1991.

Hora, N, Enbutsu, I and Baba, K “Fuzzy rule extraction from a multilayer neural net,” Proc.
IEEE, vol. 2, pp. 461-465, 1991.

Towell, GG and Shavlik, JW “The extraction of refined rules from knowledge-based neural
networks,” Machine Learning, August 1991.

Bochereau, L and Bourgine, P “Expert systems made with neural networks,” International Joint
Conference on Neural Networks, vol. 2, pp. 579-582, January 1990.

Gallant, SI “Connectionist expert systems,” Communications of the ACM, vol. 31, no. 2, pp.
152-169, February 1988.

Gedeon, TD and Bowden, TG “Heuristic pattern reduction,” International Joint Conference on
Neural Networks, Beijing, pp. 449-453, November 1992.

Gedeon, TD and Turner, H “Explaining student grades predicted by a neural network,”
Proceedings International Joint Conference on Neural Networks, pp. 609-612, Nagoya,
1993.

Rumelhart, DE, Hinton, GE, Williams, RJ, “Learning internal representations by error
propagation,” in Rumelhart, DE, McClelland, Parallel Distributed Processing, Vol. 1, MIT
Press, 1986.

Ruiz, R, Hernández, C and Mira, J “Method for mapping cardiac arrythmia in real time using
micro-processor-based systems,” Medical & Biological Engineering & Computing, vil. 22,
pp. 160-167, 1984.

Slade, P and Gedeon, TD “Bimodal Distribution Removal,” Proceedings IWANN International
Conference on Neural Networks, Barcelona, 1993. also in Mira, J, Cabestany, J and Prieto,
A, New Trends in Neural Computation, pp. 249-254, Springer Verlag, Lecture Notes in
Computer Science, vol. 686, 1993.

Turner, H and Gedeon, TD “Extracting Meaning from Neural Networks,” Proceedings 13th
International Conference on AI, vol. 1, pp. 243-252, Avignon, 1993.

